Open Geneva User Manual

Interstellar Ventures

Saturday, 19 September 2015

Table of Contents

1 Geneva: The Document API 1
2 Geneva-mk2: Reading and Writing Mk2 Files 4
3 Rendering Geneva Documents 4

3.1 Common Rendering Interface 5

4 Geneva-cl: Compiling Geneva Documents from Common Lisp
On-Line Documentation 6

Open Geneva is an implementation of the Geneva document preparation
system written in Common Lisp. This user manual describes the compo-
nents of Open Geneva from a high level perspective and explains their
operation by example. For a complete API documentation see the Open
Geneva APIL!

Open Geneva is divided into several subsystems, each implementing
a different functionality of the system. For convenience, a “master sys-
tem” is provided, which depends on every subsystem of Open Geneva.
If you want to load and/or compile Open Geneva as a whole, then you
may use the open-geneva system. The various subsystems are described
in the sections below.

e 1. Open Geneva API (open-geneva-api.html)

1 Geneva: The Document API

At the core of Open Geneva are a set of constructors and readers used
to programatically create and inspect Geneva documents. These func-
tions are in the geneva package. These constructors verify the integrity
of their arguments and their return values are normalized as defined in
the Geneva Document Specification.!

There are three different kinds of constructors: The document con-
structor make-document, document element constructors (make-pargraph
for instance) and text token constructors (make-bold etc.).

(defun make-birthday-invitation (date guest-name)
(make-document
(list
(make-section

> ("Birthday Invitation")
(list

(make-paragraph

‘(, (make-bold (format nil "Hi ~a!" guest-name))))
(make-paragraph

‘(,(format nil "You are invited to my birthday party on
date)
, (make-italic "Bring your friends!"))))))))

(make-birthday-invitation "Friday" "John") — document

Example: Dynamically creating a document.

The readers content-type and content-values work on document
elements as well as on text tokens and can be used to inspect the con-
tents of a document. Content-type returns the type of its argument and
content-values returns the components of it argument a seperate val-
ues.

(content-type (make-bold "foo")) — :BOLD
(content-type "bar") — :PLAIN ; Strings have a CONTENT-TYPE.
(content-values (make-section <title> <body)) — <title> <body>

Examples: Inspecting document contents.

A document is just a list of document elements. It can be traversed by
the standard list manipulation functions.

;; Return list of element types used in document.
(defun document-features (document)
(remove-duplicates
(loop for element in document
for type = (content-type element)
if (eq type :section)
then append (multiple-value-bind (title body)
(content-values element)
‘(:section ,@(document-features body)))
else collect (content-type element))))

(document-features (make-document
(make-paragraph ’("foo"))
(make-paragraph ’("bar")))
— (:PARAGRAPH)

Example: Traversing a document.

A document can be printed readably by the Common Lisp printer.
The easiest way to (de)serialize a document is to use read and print.

(let ((document (make-document ...)))
(equal document
(read-from-string
(prinl-to-string document))))

Example: (De)serializing a document.

The geneva.macros package provides macro counterparts of the
element constructors and a readtable’ geneva.macros:syntax which
can come in handy when dynamically creating documents. Below
is the “birthday invitation” example from above revisited using
geneva.macros.

(in-readtable geneva.macros:syntax)

(defun make-birthday-invitation (date guest-name)
(document
(section ("Birthday invitation")

(paragraph (make-bold (format nil "Hi

(paragraph
(format nil "You are invited to my birthday party on “a. "

date)
;; Note the reader macro below.

a!" guest-name)))

#i"Bring your friends!"))))

Example: Dynamically creating documents using geneva.macros.

e 1. Geneva Document Specification (geneva-document.html)

e 2. See Named-Readtables (editor-hints.named-readtables)

2 Geneva-mk2: Reading and Writing Mk2 Files

Mk2! is a human readable serialization format for Geneva documents.
Open Geneva implements the Mk2 markup language in the geneva.mk2
package. Geneva documents can be read from and printed as Mk2 using
read-mk2 and print-mk2.

Note that an MK2 file is a precise representation of a Geneva document.
The following holds true:

(let ((document (make-document ...)))
(equal document
(read-mk2 (with-output-to-string (out)
(print-mk2 document out)))))

o 1. The Mk2 Markup Language (mk2.html)

3 Rendering Geneva Documents

Open Geneva supports rendering Geneva documents as plain text,
HTML and LaTeX. The implementing functions can be loaded as

4

the geneva-plaintext, geneva-html and geneva-latex systems respec-
tively.

3.1 Common Rendering Interface

The various rendering systems share a common subset of their interface.

— Function: render-plain-text | render-html | render-latex docu-
ment &key stream title author date index-p index-caption index-headers-p
&allow-other-keys

Arguments and Values:

document—a Geneva document.

stream—a character stream. The default is standard output.
title—a string.

author—a string.

date—a string.

index-p—a generalized boolean. The default is true.
index-caption—a string. The default is "Table of Contents".
index-headers-p—a generalized boolean. The default is true.

Description:

Renders document to stream. The document rendering can optionally
be prepended by a title section and a section index. Title, author and date
are used in the title section. Index-caption can be supplied to customize
the heading of the section index. If index-p is false the section index will
be omitted. Section headers will be enumerated unless index-headers-p is

false.

Exceptional Situations:

If document is not a valid Geneva document an error of type type-error is
signaled.

4 Geneva-cl: Compiling Geneva Documents
from Common Lisp On-Line Documentation

The geneva.common-1lisp package provides a function api-document
which can be used to compile Geneva documents from Common Lisp
on-line documentation. Its usage is quite simple and can be explained
by example:

(defpackage foo
(:documentation "Foo is a demo package.")
(:use :cl)
(:export :bar))

(defun foo:bar (x) "{bar} is a _NO-0P_." x)

(api-document :foo)
— ((:SECTION ("foo")
((:PARAGRAPH ("Foo is a demo package."))
(:SECTION ("bar")
((:PARAGRAPH ("- Function: " (:BOLD "bar") " " (:ITALIC "x")))
(:PARAGRAPH ((:FIXED-WIDTH "bar") " is a "
(:ITALIC "NO-OP") ".")))))))

Creating an API document from a package.

Note that documentation strings are parsed as Mk?2 files using read-mk2.

