
Open Geneva User Manual
Interstellar Ventures

Saturday, 19 September 2015

Table of Contents

1 Geneva: The Document API 1

2 Geneva-mk2: Reading and Writing Mk2 Files 4

3 Rendering Geneva Documents 4
3.1 Common Rendering Interface 5

4 Geneva-cl: Compiling Geneva Documents from Common Lisp
On-Line Documentation 6

Open Geneva is an implementation of the Geneva document preparation
system written in Common Lisp. This user manual describes the compo-
nents of Open Geneva from a high level perspective and explains their
operation by example. For a complete API documentation see the Open
Geneva API.1

Open Geneva is divided into several subsystems, each implementing
a different functionality of the system. For convenience, a “master sys-
tem” is provided, which depends on every subsystem of Open Geneva.
If you want to load and/or compile Open Geneva as a whole, then you
may use the open-geneva system. The various subsystems are described
in the sections below.

• 1. Open Geneva API (open-geneva-api.html)

1 Geneva: The Document API

At the core of Open Geneva are a set of constructors and readers used
to programatically create and inspect Geneva documents. These func-
tions are in the geneva package. These constructors verify the integrity
of their arguments and their return values are normalized as defined in
the Geneva Document Specification.1

1

There are three different kinds of constructors: The document con-
structor make-document, document element constructors (make-pargraph
for instance) and text token constructors (make-bold etc.).

(defun make-birthday-invitation (date guest-name)

(make-document

(list

(make-section

'("Birthday Invitation")

(list

(make-paragraph

`(,(make-bold (format nil "Hi ~a!" guest-name))))

(make-paragraph

`(,(format nil "You are invited to my birthday party on ~a. "

date)

,(make-italic "Bring your friends!"))))))))

(make-birthday-invitation "Friday" "John") → document

Example: Dynamically creating a document.

The readers content-type and content-values work on document
elements as well as on text tokens and can be used to inspect the con-
tents of a document. Content-type returns the type of its argument and
content-values returns the components of it argument a seperate val-
ues.

(content-type (make-bold "foo")) → :BOLD

(content-type "bar") → :PLAIN ; Strings have a CONTENT-TYPE.

(content-values (make-section <title> <body)) → <title> <body>

Examples: Inspecting document contents.

A document is just a list of document elements. It can be traversed by
the standard list manipulation functions.

2

;; Return list of element types used in document.

(defun document-features (document)

(remove-duplicates

(loop for element in document

for type = (content-type element)

if (eq type :section)

then append (multiple-value-bind (title body)

(content-values element)

`(:section ,@(document-features body)))

else collect (content-type element))))

(document-features (make-document

(make-paragraph '("foo"))

(make-paragraph '("bar")))

→ (:PARAGRAPH)

Example: Traversing a document.

A document can be printed readably by the Common Lisp printer.
The easiest way to (de)serialize a document is to use read and print.

(let ((document (make-document ...)))

(equal document

(read-from-string

(prin1-to-string document))))

→ T

Example: (De)serializing a document.

The geneva.macros package provides macro counterparts of the
element constructors and a readtable2 geneva.macros:syntax which
can come in handy when dynamically creating documents. Below
is the “birthday invitation” example from above revisited using
geneva.macros.

3

(in-readtable geneva.macros:syntax)

(defun make-birthday-invitation (date guest-name)

(document

(section ("Birthday invitation")

(paragraph (make-bold (format nil "Hi ~a!" guest-name)))

(paragraph

(format nil "You are invited to my birthday party on ~a. "

date)

;; Note the reader macro below.

#i"Bring your friends!"))))

Example: Dynamically creating documents using geneva.macros.

• 1. Geneva Document Specification (geneva-document.html)

• 2. See Named-Readtables (editor-hints.named-readtables)

2 Geneva-mk2: Reading and Writing Mk2 Files

Mk21 is a human readable serialization format for Geneva documents.
Open Geneva implements the Mk2 markup language in the geneva.mk2

package. Geneva documents can be read from and printed as Mk2 using
read-mk2 and print-mk2.

Note that an Mk2 file is a precise representation of a Geneva document.
The following holds true:

(let ((document (make-document ...)))

(equal document

(read-mk2 (with-output-to-string (out)

(print-mk2 document out)))))

→ T

• 1. The Mk2 Markup Language (mk2.html)

3 Rendering Geneva Documents

Open Geneva supports rendering Geneva documents as plain text,
HTML and LaTeX. The implementing functions can be loaded as

4

the geneva-plaintext, geneva-html and geneva-latex systems respec-
tively.

3.1 Common Rendering Interface

The various rendering systems share a common subset of their interface.

— Function: render-plain-text | render-html | render-latex docu-
ment &key stream title author date index-p index-caption index-headers-p
&allow-other-keys

Arguments and Values:

document—a Geneva document.

stream—a character stream. The default is standard output.

title—a string.

author—a string.

date—a string.

index-p—a generalized boolean. The default is true.

index-caption—a string. The default is "Table of Contents".

index-headers-p—a generalized boolean. The default is true.

Description:

Renders document to stream. The document rendering can optionally
be prepended by a title section and a section index. Title, author and date
are used in the title section. Index-caption can be supplied to customize
the heading of the section index. If index-p is false the section index will
be omitted. Section headers will be enumerated unless index-headers-p is
false.

Exceptional Situations:

If document is not a valid Geneva document an error of type type-error is
signaled.

5

4 Geneva-cl: Compiling Geneva Documents
from Common Lisp On-Line Documentation

The geneva.common-lisp package provides a function api-document

which can be used to compile Geneva documents from Common Lisp
on-line documentation. Its usage is quite simple and can be explained
by example:

(defpackage foo

(:documentation "Foo is a demo package.")

(:use :cl)

(:export :bar))

(defun foo:bar (x) "{bar} is a _NO-OP_." x)

(api-document :foo)

→ ((:SECTION ("foo")

((:PARAGRAPH ("Foo is a demo package."))

(:SECTION ("bar")

((:PARAGRAPH ("� Function: " (:BOLD "bar") " " (:ITALIC "x")))

(:PARAGRAPH ((:FIXED-WIDTH "bar") " is a "

(:ITALIC "NO-OP") ".")))))))

Creating an API document from a package.

Note that documentation strings are parsed as Mk2 files using read-mk2.

6

